If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-4x-360=0
a = 4; b = -4; c = -360;
Δ = b2-4ac
Δ = -42-4·4·(-360)
Δ = 5776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5776}=76$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-76}{2*4}=\frac{-72}{8} =-9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+76}{2*4}=\frac{80}{8} =10 $
| 9a+10=118 | | 4-(6m+6=2(m+6-m | | -8p=-14-10p | | 1/3(2d-8)=4 | | x÷9=-3 | | -3-4s=-5s-17 | | 2(3+x)=12-5x | | 5(x-8)=-55 | | 1÷3(6x+3)=13 | | -4x+10=15x+18 | | 9k-15k+2=-6-8k | | 112=-w+186 | | 4+m/2=5/6 | | -3(x+1)+9x=-15 | | x+1/x^2+x+1+x^2+x+1/x+1=13/6 | | m-7/6=19/9 | | -x+39=187 | | 11z5=9z+7- | | 7^2x5=8 | | y-28=8 | | -y+50=258 | | 10-3(x+2)=5x+12 | | 4(x-0.8)X=4 | | 7^2x5=-8 | | 56n=4 | | -8p-6=-10p+4 | | n/4=56 | | 12x+6=12-15-9x | | -2(-8)-2y=9 | | 4(2x+9)=-19+15 | | 56*4=n | | 25=184-y |